グローバルナビゲーションへ

本文へ

バナーエリアへ

フッターへ



ホーム > 教員情報 > 大学院 電気情報工学専攻 > 三川 健太 講師

三川 健太 講師


[担当課程]
博士前期課程

[取得学位]
博士(工学)

研究テーマ

統計的機械学習手法に関する研究とその実データへの応用

主な研究業績

<論文>
  1. 松嵜祐樹, 三川健太,後藤正幸:"マルコフ潜在クラスモデルに基づくECサイトにおける施策実施効果分析に関する一考察",情報処理学会論文誌, vol.58, no.12, pp.2034-2045, 2017-12.
  2. S. Misawa, K. Mikawa, and M. Goto:"Adaptive Prediction Method Based on Alternating Decision Forests with Considerations for Generalization Ability",Industrial Engineering & Management Systems, vol.16, no.3, pp.384-391, 2017-10.
  3. L. Suzuki, K. Mikawa, and M. Goto:"Multi-Valused Classification of Text Data Based on an ECOC Approach Using a Ternary Orthogonal Table",Industrial Engineering & Management Systems, vol.16, no.2, pp.155-164, 2017-7.
  4. Y. Yamamoto, K. Mikawa, and M. Goto:"A Proposal for Classification of Document Data with Unobserved Categories Considering Latent Topics",Industrial Engineering & Management Systems, vol.16, no.2, pp.165-174, 2017-7.
  5. 湯川 輝一朗, 三川健太,後藤正幸:"データの転送制御に基づいた分散型SVMの効率的な学習手法",日本経営工学会論文誌, vol.68, no.2, pp.86-98, 2017-7.
  6. 藤原直広, 三川健太,後藤正幸:"閲覧及び購買行動を同時に表現するアスペクトモデルによる購買予測手法の提案",経営情報学会誌, vol.26, no.1, pp.1-16, 2017-6.
  7. 早川真央, 三川健太,荻原大陸,後藤正幸:"層別木と混合ワイブル分布に基づく就職活動終了時期の分析モデルの構築",情報処理学会論文誌, vol.58, no.5, pp.1189-1206, 2017-5.
  8. T. Maga, K. Mikawa, and M. Goto:"Data pair selection for accurate classification based on information-theoretic metric learning",Asian J. Management Science and Applications, vol.3, no.1, pp.61-74, 2017-4.
  9. 三川健太,後藤正幸,“カテゴリ毎に異なる計量行列を用いた計量距離学習に関する一考察,”日本経営工学会論文誌,vol.66, no.4, pp. 335-347, 2016-1.
  10. 三川健太,小林学,後藤正幸,“教師あり学習に基づくl_1正則化を用いた計量行列の学習法に関する一考察,”日本経営工学会論文誌,vol.66, no.3, pp. 230-239, 2015-11.
  11. K. Mikawa and M.Goto, “Regularized Distance Metric Learning for the Document Classification and its Application,”日本経営工学会論文誌,vol.66, no.2E, pp. 190-203, 2015-7.
  12. 大井貴裕,三川健太,後藤正幸,“評価と購買の両履歴データの学習による確率的潜在クラスモデルの推定精度向上に関する一考察,” 日本経営工学会論文誌, vol.65, no.4, pp.286-293, 2015-1.
  13. 下村良,三川健太,後藤正幸,“大規模テキストデータの分類体系化のための機械学習に基づく半自動分類法の提案,” 日本経営工学会論文誌, vol.65, no.2, pp.51-60, 2014-7.
  14. T. Suzuki, G. Kumoi, K. Mikawa, and M. Goto, “A Design of Recommendation Based on Flexible Mixture Model Considering Purchasing Interest and Post-Purchase Satisfaction,” 日本経営工学会論文誌, vol.64, no.4E, pp.570-578, 2014-1.
  15. 井沢祐介,三川健太,後藤正幸,“エージェントベースシミュレーションによる確率潜在空間モデルを用いた推薦システムの評価,”経営情報学会論文誌, vol.22, no.2, pp.1-22, 2013-9.
  16. T. Ogihara, K. Mikawa, G. Hosoya, and M. Goto, “Multi-valued Document Classi cation based on coding theory,” China-USA Business Reviw, vol.12, no.9, pp.911-917, 2013-9.
  17. 荒川貴紀,三川健太,後藤正幸,“未観測カテゴリを含む文書データの自動分類手法に関する研究,”電子情報通信学会論文誌D, vol.J96-D, no. 8, pp.1955-1959, (2013-8)
  18. K. Mikawa, T. Ishida and M. Goto, “An Optimal Weighting Method in Supervised Learning of Linguistic Model for Text Classification,” Industrial Engineering & Management Systems, Vol.11 No.1, pp.87-93, 2012-1.
  19. 三川健太,増井忠幸,後藤正幸,“顧客ロイヤルティ構造図に基づく重要要因の定量化手法に関する一考察,”日本経営工学会論文誌, vol.59, No.5, pp.365-375, 2008-12.
  20. 三川健太,高橋勉,後藤正幸,“テキストデータに基づく顧客ロイヤルティの構造分析手法に関する一考察,”日本経営工学会論文誌, vol.58, No.3, pp.182-192, 2007-8.
<国際会議>
  1. M. Kobayashi, K. Mikawa, M. Goto, T. Matsushima, and S. Hirasawa: "Collaborative Filtering Based on the Latent Class Model for Attributes", 16th IEEE International Conference on Machine Learning and Applications, 2017-12.
  2. K. Mikawa, M. Kobayashi, M. Goto, and S. Hirasawa: "Distance Metric Learnig using Each Category Centroid with Nuclear Norm Regularization", The 2017 IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2017), 2017-11.
  3. M. Kobayashi, K. Mikawa, M. Goto, and S. Hirasawa: "Collaborative Filtering Analysis of Consumption Behavior Based on the Latent Class Model", 2017 IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC2017), 2017-10.
  4. Y. Matsuzaki, K. Yamagami, K. Mikawa and M. Goto, “Analysis of customer purchase behavior by using purchase history with discount coupon based on latent class model," 16th Asia Pacific Industrial Engineering and Management Society (16th APIEMS), 2015-12.
  5. L. Suzuki, K. Yamagami, K. Mikawa, and M. Goto, “Multi-valued Classification of Text Data based on ECOC Approach using Ternary Orthogonal Table," 16th Asia Pacific Industrial Engineering and Management Society (16th APIEMS), 2015-12.
  6. S. Misawa, K. Mikawa, and M. Goto, “Adaptive Prediction Method Based on Alternating Decision Forests considering Generalization Ability," 16th Asia Pacific Industrial Engineering and Management Society (16th APIEMS), 2015-12.
  7. K. Yamagami, K. Mikawa, M. Goto and T. Ogihara, “A Statistical Prediction Model of Students ’ Success Date on Job Hunting Using Internet Portal Sites Data," 16th Asia Pacific Industrial Engineering and Management Society (16th APIEMS), 2015-12.
  8. S. Nagamori, K. Yamagami, K. Mikawa, M. Goto and T. Ogihara, “A Finish Date Prediction of Job Hunting based on User Clustering Approach considering Time Series Variation of Entry Tendencies," 16th Asia Pacic Industrial Engineering and Management Society (16th APIEMS), 2015-12.
  9. Y. Yamamoto, K. Mikawa and M. Goto, “A Proposal for the Classification Method of Documents Data with Unobserved Categories Considering Latent Topics," 16th Asia Pacific Industrial Engineering and Management Society (16th APIEMS), 2015-12.
  10. K. Mikawa, M. Kobayashi, M. Goto, and H. Hirasawa, “A Study of Distance Metric Learning by Considering the Distances between Category Centroids," 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC2015), pp.1645-1650, 2015-10.
  11. K. Yukawa, K. Mikawa, M. Goto, “The Study of Distributed Support Vector Machine with Lower Time Computational Complexity,” Asian Conference of Management Science & Applications (ACMSA2015), No. 47, 2015-9.
  12. T. Maga, K. Yukawa, K. Mikawa, M. Goto "Data pair selection for improving classification accuracy of Information-Theoretic Metric Learning," Asian Conference of Management Science & Applications (ACMSA2015), No. 22, 2015.9.
  13. Q. Zhang, H, Yamashita, K. Mikawa, M. Goto “Analysis of Purchase History Data Based on a New Latent Class for RFM Analysis,” Asian Conference of Management Science & Applications (ACMSA2015), No. 39, 2015.9.
  14. H. Auchi, K. Mikawa, M. Goto “A Bayes Prediction Algorithm for the Model Class Conditioned by the Cumulative Number of Event Occurrences," Asian Conference of Management Science & Applications (ACMSA2015), 2015.9.
  15. H. Saito, K. Mikawa, M. Goto “A Proposal of Classification Method Based on Local Metric Matrices,” Asian Conference of Management Science & Applications (ACMSA2015), 2015.9.
  16. M. Goto, K. Mikawa, M. Kobayashi, S. Horii, T. Suko, and S. Hirasawa, “An Analysis of Purchasing and Browsing Histories on an EC Site Based on a New Latent Class Model," The 1st East Asia Workshop on Industrial Engineering, 2014-11.
  17. S. Misawa, N. Fujiwara, K. Mikawa, and M. Goto, “A Prediction Method based on Weighted Ensemble of Decision Trees on Alternating Decision Forests," 15th Asia Pacific Industrial Engineering and Management Society (15th APIEMS), 2014-10.
  18. N. Fujiwara, K. Mikawa, and M. Goto, “A New Estimation Method of Latent Class Model with High Accuracy by Using Both Browsing and Purchase Histories," 15th Asia Pacific Industrial Engineering and Management Society (15th APIEMS), 2014-10.
  19. K. Yamagami, N. Fujiwara, K. Mikawa, and M. Goto, “A Statistical Model for Recommender System to Maximize Sales Amount Focusing on Characteristics of EC Site Data," 15th Asia Pacific Industrial Engineering and Management Society (15th APIEMS), 2014-10.
  20. H. Saito, F. Yamazaki, K. Mikawa, and M. Goto, “Distance Metric Learning with Low Computational Complexity based on Ensemble of the Low-dimensional Matrixes," 15th Asia Pacific Industrial Engineering and Management Society (15th APIEMS), 2014-10.
  21. K. Yukawa, K. Mikawa, and M. Goto, “Statistical Model Selection of Liner Regression for Privacy Preserving Data Mining," 15th Asia Pacific Industrial Engineering and Management Society (15th APIEMS), 2014-10.
  22. M. Goto, K. Minetoma, K. Mikawa, M. Kobayashi, and S. Hirasawa, “A Modified Aspect Model for Simulation Analysis," IEEE International Conference on Systems, Mans and Cybanetics (SMC2014), pp.1306-1311, 2014-10.
  23. K. Mikawa, M. Kobayashi, M. Goto, and H. Hirasawa, “A Proposal of l1 Regularized Distance Metric Learning for High Dimensional Sparse Vector Space," 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC2014),pp.1741-1746, 2014-10.
  24. Y. Matsuzaki, S, Nagamori, K. Mikawa, M. Goto, and B. Bushell, “A Comparative Survey on Sustainable Tourism Development Considering Regional Characteristics in Nepal," The conference of the 20th IICE, 2014-6.
  25. K. Mikawa, T. Ishida, and M. Goto, “Regularized Distance Metric Learning and its Application to Knowledge Discovery," 14th Asia Pacific Industrial Engineering and Management Society (14th APIEMS), 2013-12.
  26. M. Hayakawa, K. Mikawa, T. Ishida, and M. Goto, “Statistical Prediction Model of Students' Success on Job Hunting by Log Data Analysis," 14th Asia Pacific Industrial Engineering and Management Society (14th APIEMS), 2013-12.
  27. S. Sakamoto, K. Mikawa, and M. Goto, “A Study on Recommender System Based on Latent Class Model for High Dimensional and Sparse Data," 14th Asia Pacific Industrial Engineering and Management Society (14th APIEMS), 2013-12.
  28. F. Yamazaki, S. Sakamoto, K. Mikawa, and M. Goto “Training Data Selection in Large Margin Nearest Neighbor Method for Classification Problems," 14th Asia Pacific Industrial Engineering and Management Society (14th APIEMS), 2013-12.
  29. T. Ogihara, K. Mikawa, and M. Goto “Multi-valued Classication of Text Data based on ECOC Approach considering Parallel Processing," 14th Asia Pacific Industrial Engineering and Management Society (14th APIEMS), 2013-12.
  30. T. Oi, K. Mikawa, and M. Goto, “A Study of Recommender Systems Based on the Latent Class Model Estimated by Combining Both Evaluation and Purchase Histories," 14th Asia Pacific Industrial Engineering and Management Society (14th APIEMS), 2013-12.
  31. K. Mikawa, T. Ishida, M. Goto, and S. Hirasawa, “A Proposal of Adaptive Metric Learning to Each Category Characteristics for Text Classification," 2013 RISP International Workshop on Nonlinear Circuits, Communications and Signal Processing, pp.544-547, 2013-3
  32. K. Mikawa, T. Ishida, M. Goto, and S. Hirasawa, “An Optimal Weighting Method by Using the Category Information in Text Classification based on Metric Learning," 13th Asia Pacific Industrial Engineering and Management Society (13th APIEMS), 2012-12.  
  33. Y. Izawa, K. Mikawa, and M. Goto, “The Agent-Based Simulation Analysis of Collaborative Filtering Using Mixed Membership Stochastic Block Models," 13th Asia Pacific Industrial Engineering and Management Society (13th APIEMS), 2012-12.
  34. T. Oi, T. Arakawa, K. Mikawa, and M. Goto, “A Proposal of Improved Naïve Bayes Method for Collaborative Filtering by Introducing Clustering," 13th Asia Pacific Industrial Engineering and Management Society (13th APIEMS), 2012-12.
  35. T. Ogihara, K. Mikawa, G. Hosoya, and M. Goto, “Multi-valued Document Classification based on Generalized Bradley-Terry Classifiers Utilizing Accuracy Information," 13th Asia Pacific Industrial Engineering and Management Society (13th APIEMS), 2012-12.
  36. S. Sakamoto, Y. Izawa, K. Mikawa, and M. Goto, “A Study for Recommender System based on Mixed and Constrained Latent Dirichlet Allocation," 13th Asia Pacific Industrial Engineering and Management Society (13th APIEMS), 2012-12.
  37. T. Suzuki, K. Mikawa, and M. Goto, “A Study of Recommender System to Improve Aggregate Diversity based on Latent Class Model," 13th Asia Pacific Industrial Engineering and Management Society (13th APIEMS), 2012-12.
  38. K. Mikawa, G. Kumoi, K. Suzuki, and M. Goto “A Proposal of Extracting Unknown Information from Customer Review for SWOT Analysis," 2011 Asian Conference of Management Science & Applications, ID-167, 2011-10.
  39. Y. Izawa, H. Sakaeda, K. Mikawa, and M. Goto, “A Recommender System Considering with Item Evaluation based on Mixed Membership Stochastic Block Models," 12th Asia Pacic Industrial Engineering and Management Society (12th APIEMS), ID-118, 2011-10.
  40. T. Suzuki, G. Kumoi, K. Mikawa, and M. Goto, “A study on the recommender system based on probabilistic latent model," 12th Asia Pacific Industrial Engineering and Management Society (12th APIEMS), ID-127, 2011-10.
  41. K. Mikawa, T. Ishida, and M. Goto, “An Optimal Weighting Method in Supervised Learning of Linguistic Model for Text Classification," 12th Asia Pacific Industrial Engineering and Management Society (12th APIEMS), ID-141, 2011-10.
  42. K. Hibi, G. Kumoi, K. Mikawa, and M. Goto, “Automated source code plagiarism detection based on coding style model probability based on Relevance Vector Machine," 12th Asia Pacific Industrial Engineering and Management Society (12th APIEMS), ID-147, (2011-10)
  43. R. Odai, G. Kumoi, K. Mikawa, G. Hosoya, and M. Goto, “Multivalued document classification by maximization of posterior probability based on Relevance Vector Machine," 12th Asia Pacific Industrial Engineering and Management Society (12th APIEMS), ID-205, 2011-10.
  44. K. Mikawa, T. Ishida, and M. Goto, “A Proposal of Extended Cosine Measure for Distance Metric Learning in Text Classication," 2011 IEEE International Conference on Systems, Man, and Cybernetics (SMC2011), pp.1741-1746, 2011-10.
  45. K. Suzuki, R. Horiuchi, Y. Kurishima, and K. Mikawa, “A Participatory Process toward a Model for Environmental Sustainability," Salt of the earth Conference,2006-10
  46. B. Bushell, Y. Kurishima, K. Mikawa, and M. Goto, “Creating Learning Environments through eco-design," North American Association for Environmental Education, 34th Annual Conference, 2005-10.

ページの先頭へ戻る