
IEEE Copyright Notice 

 

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all 

other uses, in any current or future media, including reprinting/republishing this material for advertising 

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 

reuse of any copyrighted component of this work in other works. 

 



Proposal and Evaluation by Simulation of
Management Processing Load Control Method for

Virtual Client System

Katsuyuki UMEZAWA
IT Service Division, Hitachi, Ltd.

Tokyo, 101-8608 Japan
Email: katsuyuki.umezawa.ue@hitachi.com

Hiromi GOTO
IT Service Division, Hitachi, Ltd.

Tokyo, 101-8608 Japan
Email: hiromi.goto.nh@hitachi.com

Abstract—In recent years, virtualization of desktops has
become important as a solution for various problems caused
from the cost of running a company. Our company began using
thin client blade (CB) systems and thin client terminal service
(TS) systems about ten years ago. There are currently about
70,000 users of these systems in our group companies. A thin
client virtual PC system has been developed as a virtualization
platform for the desktop. The management processing load
dispersion in virtual PC system was designed for a large number
of users. We previously reported a method that addresses this
problem. In this paper, evaluation by simulation of a previously
proposed improved method for managing the load imposed on
resources in a virtual PC system showed that it effectively
prevents significant load increases. The threshold for initiating
management processing can be flexibly set, which enables the
load in a virtual client environment to be precisely controlled.
Use of this method would enable virtual clients to be managed
more effectively.

I. INTRODUCTION

According to the International Data Corporation [1], the
return on investment for implementing client virtualization
products of 2013 is more than 400%, and the investment
payback period is approximately ten months. In other words,
introducing a client virtualization product produces a benefit
more than four times the investment. Moreover, the cost of the
investment is returned within one year.

Our company began using thin client blade (CB) systems
and thin client terminal service (TS) systems about ten years
ago. There are currently about 70,000 users of these systems
in our group companies. A thin client virtual PC system has
been developed as a virtualization platform for the desktop.
The management processing load dispersion in this “virtual
desktop” was designed for a large number of users [19]. We
previously reported a method that addresses this problem [21]
[22]. It was designed to prevent a significant increase in the
load on resources such as disk I/O, CPU, network, and memory
when there is a large number of users of the virtual PC system.

We have now evaluated the proposed improved method
by simulation and demonstrated that it effectively prevents a
significant increase in the load.

In section 2, we describe three desktop virtualization
technologies, and in section 3, we describe the load problems
when using them. In section 4, we discuss related work and

our previous work. The original method for load dispersion is
described in section 5. We overview our previously proposed
improved method for preventing high loads in section 6. Our
simulation of this method and the results are described in
section 7. Section 8 concludes the paper with a summary of
the key points and a mention of future work.

II. DESKTOP VIRTUALIZATION TECHNOLOGIES

Desktop virtualization technologies can be classified into
CB systems, TS systems, and virtual PC systems, as illustrated
in Figure 1.

Fig. 1. Basic configurations of CB, TS, and virtual PC systems

A. Client blade systems

A CB system comprises thin PCs, called “blades,” mounted
in a rack. Each blade is allocated to a user. Since applications
can be installed individually in each blade, an environment
satisfying the needs of a user can be constructed. However,
since the computing resources are not flexible, the processing
capacity may be low for a single blade; however, the processing
capacity of most blades can afford. In addition, managing
individual client OSs can be complicated because, for example,
virus measures and security patches must be implemented on
each blade individually.

B. Terminal service systems

A TS system comprises a server OS on one server and
applications for multiple clients on that OS. Because the server
hardware resources can be flexibly used among multiple clients
at the same time in a multiple desktop environment, they can
be used effectively. In addition, efficient operation management



is possible because applications and data can be managed
effectively. However, applications cannot be installed for each
individual user.

C. Virtual PC systems

A virtual PC system comprises multiple virtual machines
on one physical server controlled by a hypervisor. Each virtual
machine has an OS and desktop environment. With a virtual
PC system, multiple OSs operate on a server; with a TS system,
there is only one OS per server. Since each OS in the virtual
PC system has a virtual desktop environment, an environment
that satisfies the needs of each user can be constructed because
applications as well as CB systems can be installed on each
individual virtual machine. Moreover, data can be controlled
effectively, as with a TS system.

III. LOAD PROBLEMS WITH DESKTOP VIRTUALIZATION

Load problems are typically encountered with desktop
virtualization. OS updating, security patch application, and
virus scanning (all considered to be “management processing”)
of virtual clients that share resources (as in the TS and virtual
PC systems) increase the load on resources (disk I/O, CPU,
network, memory etc.). This makes it difficult to manage a
large number of virtual clients without causing a significant
load.

One proposed approach to dispersing the load is to group
the datastores and to group the management processes [19].
However, variations in the quantity of management processes
can significantly increase the load.

Under these conditions, the manager might schedule the
management processing activities on the basis of the load of
the virtual client environment. Alternatively, the manager can
estimate the maximum load that will be imposed by trial and
error in a test environment. In addition, there may be a situation
in which management processing itself cannot be done due to
insufficient resources.

IV. RELATED WORK

Several studies [2][3][4] focused on latency and bandwidth
between a thin client system and server, and a number of
studies [5][6][7][8][9][11] considered VM placement models.
Other studies [10] investigated the performance of storage in
virtualized environments. None of these studies, however, were
done considered virtual desktops.

Several studies have considered virtual desktops. Shridha-
ran et al. presented a resource defragmentation algorithm based
on virtual desktop migration [12], and Calyam et al. presented
a resource allocation model based on a benchmarking tool [13].
A method for managing resources in a virtual desktop envi-
ronment has been investigated by several groups [14][15][16].
One finding in particular is that CPU utilization on one day
is associated with the utilizations on other days [14][15].
Methods for reducing the load on shared storage by using
caches have been proposed by a couple of groups [17][18].

As mentioned above, the load dispersion in the “virtual
desktop” of our thin client virtual PC system was designed for
a large number of users, resulting in a high system load [19].
The load was evaluated [20] by using the technique of Le

Thanh Man and Kayashima [14] and [15]. Also as mentioned
above, we previously reported a method [21][22] for avoiding
the high load that affects the originally proposed method [19].

We have now evaluated our proposed improved method.

V. VIRTUAL PC SYSTEM

A. Overview

The virtual desktop environment of our virtual PC system
accommodates 1,200 users in one data center and 5,100 users
in another data centers. The plan is to build a virtual desktop
environment for 30,000 users in total (three data centers,
10,000 users each).

The configurations of the current system is illustrated in
Figure 2. The virtual desktop copes with hardware obstacles
by using a high availability (HA) configuration of 15:1. The
authentication server, virtual desktop deploy server, virtual
desktop login server, and scan definition server were made
redundant by using active-active configurations to deal with
load dispersion and obstacles. The file server was made re-
dundant by using N+1 configurations so that it could be used
for dealing with obstacles. The number of storage management
servers was determined by the number needed to manage the
system.

The “Virtual Desk-top” and “Storage for System (Boot)
Disk,” shown at the top right of Figure 2, are related to a
future discussion.

B. Previous load dispersion method of current system

1) Use of meshed storage mapping to balance load: In
the originally proposed method [19], each virtual desktop
controlled by a hypervisor is dispersed and assigned to multiple
datastores to enable dispersion of the network load between the
hypervisor and datastores. The current system executes with a
load of 1/12 (for five people) even if one blade is broken.
It executes with a load of 1/12 (for five people) even if the
chassis is broken.

2) Use of management process grouping to balance load:
In the originally proposed method [19], the disk I/O load is
scattered when management processing is performed. Specif-
ically, the virtual desktops controlled by a hypervisor are
grouped so that the desktops in each group do not share a
datastore.

Then, the OS or applications are updated or a virus scan is
conducted for one group at a time so that datastore conflicts
are avoided. The deploy management server sends appropriate
instructions for doing this to either one or a few groups.

Because, in our proposed improved method, processing is
carried out on a group basis, a few virtual desktops controlled
by a hypervisor may share a datastore. This enables the
dispersion of the network load between the hypervisor and
the datastores to be better planned.

VI. PROPOSED IMPROVED METHOD

However, a large amount of management processing would
result in a high resource load, and the system could stop.
In such a case, the manager must schedule the management



Fig. 2. Configuration of virtual PC system

processing or determine the maximum load by using a trial
and error approach in a test environment, as mentioned above.
Thus, the above proposed method is not sufficiently effective.

With the proposed improved method [21] [22] evaluated
here, highly precise load control of the virtual client envi-
ronment is achieved, and the virtual clients are appropriately
and effectively managed. The concept is simple: whenever
management processing is to be performed, the system checks
the load situation, and only if it is lower than a threshold the
processing performed.

A. Proposed system

The flow of the proposed system [21] is shown in Figure
3. [1] The management server sends a management processing
instruction such as update OS, apply security patch, or conduct
virus scan to each virtual desktop controlled by the hypervisor,
as shown in Figure 3. [2] Before executing the instruction,

each virtual desktop sends a judgment request to the server
monitoring the system inquiring whether it should proceed.
[3] The monitoring server observes the operation situation for
the resources to be used by the virtual desktop. The server
[4] compares the result with the preset threshold to determine
whether the virtual desktop should proceed and [5] sends the
judgment result to the desktop. The desktop carries out the
processing only if it receives approval.

1) General flow of proposed system: We show a load con-
trol flow of the proposal in figure 4. The proposed load control
flow is illustrated in Figure 4. The virtual client receives
instructions to perform management processing (i.e., to execute
a “management instruction”) from a management server and
sends a judgment request including the virtual client’s ID to the
monitoring server. The monitoring server receives the request
and observes the operation situation for the virtual client.
It compares each value (disk I/O, CPU load, network load,



Fig. 3. Flow of proposed system

Fig. 4. General flow of proposed system

memory load, etc.) with the preset threshold values. If one or
more observed levels exceed the threshold, the server notifies
the virtual client that the management instruction should not
be executed. Otherwise, the server notifies the client that the
management instruction can be executed.

In addition, the performance judgment can be made by
comparing the list of preset thresholds for every resource type

TABLE I. EXAMPLE OF THRESHOLD INFORMATION

Management
instruction

Resources 6:00
–
7:00

7:00
–
8:00

... 5:00
–
6:00

Conduct Disk I/O 4 2 ... 4
virus CPU 70% 40% ... 70%
scan Network 70% 60% ... 80%

Memory 65% 50% ... 65%
Deliver Disk I/O 5 3 ... 5
file CPU 70% 40% ... 70%

Network 50% 40% ... 60%
Memory 85% 70% ... 85%

Back up Disk I/O 4 2 ... 4
data CPU 70% 40% ... 70%

Network 55% 45% ... 65%
Memory 85% 70% ... 85%

Fig. 5. Steps in restarting instruction execution

and instruction practice time, as shown in Table I, with the
levels observed for the virtual client.

The virtual client executes the instruction if the judgment
result sent by the monitoring server is “Execute.” Execution
is stopped if the previously scheduled time has passed even
if the processing has not completed. Furthermore, execution
does not start if the judgment is “Do not execute.” In both
cases, once a previously scheduled elapsed time has passed or
a previously scheduled time has come, the execution process
is restarted.

2) Detailed flow at time of execution: The flow marked
by the dashed line in Figure 4 is shown in more detail in
Figure 5. If the execution of the management instruction by
a virtual client is not completed due to a “time expired” or a
“Do not execute” judgment, the information needed for future



execution is saved. The task is restarted after a certain amount
of time has passed.

If the previously scheduled elapsed time has passed or a
previously scheduled time has come, execution of the highest
priority instruction that was not executed is executed, and
then, if that instruction is executed successfully, the next-
highest priority instruction that was not executed is executed.
The instruction information that is stored includes the priority
information.

Before restarting instruction execution, the virtual client
determines the data size of the instruction. If the size is “big,”
it judges whether the data can be divided into smaller units.
If they can, the data is divided into a predetermined number
of units, and execution is started. If the size is not “big”, or
the data cannot be divided, execution is started with the data
in the same form.

VII. EVALUATION

We evaluated the proposed improved method by simulating
the CPU load. Usage of other resources (disk I/O, network,
memory, etc.) can be similarly evaluated by simply stopping
execution when at least one of two or more resources is judged
to be inadequate for execution.

A. Conditions

The simulation conditions are illustrated in Figure 6 and
listed in Table II.

Fig. 6. Simulation Conditions

TABLE II. SIMULATION CONDITIONS

Parameter Value
(1) Number of CPU partitions 100
(2) Processing time for one task [ms] 2300

Variance in processing time 500
(3) Task interarrival time [ms] 10

Variance in interarrival time 5
(4) Number of tasks 1000
(5) Delay time for judgment [ms] 10
(6) Threshold for CPU operating ratio (%) 70

B. Results

The simulation results are plotted in Figure 8.

With the “conventional” method1, the CPU operating ratio
reached 100% immediately, and the queue steadily increased.
This means that the user was soon unable to work on his or
her desktop.

With the proposed improved method, the time taken to
complete the 1000 tasks was about twice as long due to
the CPU operating ratio being kept below the 70% threshold
(which can be flexibly set). This means that at least 30% of the
CPU load was available to the user for normal work. Moreover,
the queue length remained zero. The proposed improved
method thus effectively prevents a significant increase in the
load.

Fig. 7. Simulation screen

Fig. 8. Simulation results

VIII. CONCLUSION

Evaluation by simulation of the previously proposed im-
proved method for managing the load imposed on resources
when managing users on a large scale in a virtual PC system

1“conventional” means a method not to apply a proposed improved method.



showed that it effectively prevents a significant increase in the
load. The ability to flexibly set the threshold for management
processing enables the load in a virtual client environment
to be precisely controlled. Use of this method enables vir-
tual clients to be effectively managed. Future work includes
constructing a system based on the improved method and
evaluating it in a real environment.

REFERENCES

[1] “Japan client virtualization market ROI analysis,” International Data
Corporation Japan, 2014,
http://www.idcjapan.co.jp/Press/Current/20140220Apr.html

[2] Lai, A. and Nieh, J. “On the performance of wide-area thin-client
computing,” ACM Transactions on Computer Systems, pp. 175–209,
2006.

[3] Tolia, N., Andersen, D., and Satyanarayanan, M. “Quantifying interac-
tive user experience on thin clients,” IEEE Computer, volume 39, pp.
46–52. 2006.

[4] Berryman, A., Calyam, P., Lai, A., and Honigford, M. “Vdbench:
A benchmarking toolkit for thin-client based virtual desktop envi-
ronments,” 2nd IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 480–487. 2010.

[5] Malet, B. and Pietzuch, P. “Resource allocation across multiple cloud
data centres,” 8th International Workshop on Middleware for Grids,
Clouds and e-Science (MGC), 2010.

[6] Mohammadi, E., Karimi, M., and Heikalabad, S. “A novel virtual
machine placement in cloud computing,” Australian Journal of Basic
and Applied Sciences, volume 5, pp. 1549–1555. 2011.

[7] Piao, J. and Yan, J. “A network-aware virtual machine placement and
migration approach in cloud computing,” Ninth International Confer-
ence on Grid and Cloud Computing, pp. 87–92, 2010.

[8] Sonnek, J., Greensky, J., Reutiman, R., and Chandra, A. “Starling:
minimizing communication overhead in virtualized computing plat-
forms using decentralized affinity-aware migration,” 39th International
Conference on Parallel Processing (ICPP), pp. 228–237, 2010.

[9] Sato, K., Sato, H., and Matsuoka, S. “A model-based algorithm for op-
timizing io intensive applications in clouds using VM-based migration,”
9th IEEEACM International Symposium on Cluster Computing and the
Grid (CCGRID), pp. 466–471. 2009.

[10] Gulati, A., Kumar, C., and Ahmad, I. “Storage workload characteriza-
tion and consolidation in virtualized environments,” 2nd International
Workshop on Virtualization Performance: Analysis, Characterization,
and Tools (VPACT), 2009.

[11] Zhang, Z., Xiao, L., Li, Y., Ruan, L., ”A VM-based Resource Manage-
ment Method Using Statistics,” 18th IEEE International Conference on
Parallel and Distributed Systems (ICPADS), pp. 788–793, 2012

[12] Sridharan, M., Calyam, P., Venkataraman, A., and Berryman, A. “De-
fragmentation of resources in virtual desktop clouds for cost-aware
utility optimal allocation,” 4th IEEE International Conference on Utility
and Cloud Computing (UCC), pp. 253–260, 2011.

[13] Calyam, P., Patali, R., Berryman, A., Lai, A., and Ramnath, R. “Utility-
directed resource allocation in virtual desktop clouds,” Computer Net-
works, volume 55, pp. 4112–4130, 2011.

[14] Le Thanh Man, C. and Kayashima, M., “Virtual Machine Placement
Algorithm for Virtualized Desktop Infrastructure,” IEEE International
Conference on Cloud Computing and Intelligence Systems (CCIS),
2011.

[15] Le Thanh Man, C. and Kayashima, M., “Desktop Work Load Char-
acteristics and Their Utility in Optimizing Virtual Machine Placement
in Cloud,” IEEE International Conference on Cloud Computing and
Intelligence Systems (CCIS), 2012.

[16] Kochut, A., Beaty, K., Shaikh, H., and Shea, D., “Desktop Workload
Study with Implications for Desktop Cloud Resource Optimization,”
IEEE International Symposium on Parallel and Distributed Processing,
Workshops and Phd Forum (IPDPSW), 2010.

[17] Shamma, M., Meyer, D., Wires, J., Ivanova, M., Hutchinson, N., and
Warfield, A., “Capo: Recapitulating Storage for Virtual Desktops,” 9th

USENIX Conference on File and Storage Technologies (FAST), pp.
31–45. 2011.

[18] Lagar-Cavilla, H., Whitney, J., Scannell, A., Patchin, P., Rumble, S.,
De Lara, E., Brudno, M., and Satyanarayanan, M., “SnowFlock: rapid
virtual machine cloning for cloud computing,” 4th ACM European
Conference on Computer Systems, pp. 1–12. 2009.

[19] Umezawa, K., Iwashita, A., and Kato, Y., “Development of a Virtual PC
Type Thin Client System,” The Institute of Electronics, Information and
Communication Engineers (IEICE), Information and Communication
Management (ICM) Technical Report, Vol. 112, No. 378, pp. 97–102,
Jan 2013.

[20] Iwashita, A., Miyake, T., Kato, Y., and Umezawa, K., “Performance
Evaluation of a Virtual PC Type Thin Client System,” 75th National
Convention of Information Processing Society of Japan, Vol. 1, pp. 77–
78, Mar. 2013.

[21] Umezawa, K. and Gotoh, H., “A Proposal of Load Control Method
for Virtual Client System,” The Institute of Electronics, Information
and Communication Engineers (IEICE), Life Intelligence and Office
Information Systems (LOIS) Technical Report Vol. 113, No. 210, pp.
49–52, Sept. 2013.

[22] Umezawa, K. and Goto, H., “Load Control System for Virtual Client
System,” 1st Mosharaka International Conference on Telecommunica-
tion Systems and Networks (MIC-Telecom2013), Dec. 2013.


	IEEE Copyright Notice_Letter_2014
	PID3288815.pdf

