
IEEE Copyright Notice

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

A Method of Threat Analysis for Cyber-Physical
System using Vulnerability Databases

Yusuke Mishina, Kazuo Takaragi
Information Technology Research Institute (ITRI)

Advanced Industrial Science and Technology (AIST)
Annex, 2-3-26 Aomi, Koto-ku

Tokyo 135-0064, Japan
{yusuke.mishina, kazuo.takaragi}@aist.go.jp

Katsuyuki Umezawa
Department of Information Science

Shonan Institute of Technology
1-1-25 Tsujido-Nishikaigan, Fujisawa

Kanagawa 251-8511, Japan
umezawa@info.shonan-it.ac.jp

Abstract—Safety and security are major issues for
cyber-physical systems. We propose a threat analysis
method effective for the design stage of a safety-critical
cyber-physical system, utilizing the fact that similar sys-
tems tend to have co-occurrence in the way of their chain
in vulnerability. We first utilize a vulnerability database
to express known cyber-attack cases on the Fault Tree-
Attack Tree (FT-AT). Second, the method uses FT-AT as
a kind of teacher data for similar system threat analysis
and uses it to find new attacks in similar systems. This
makes it possible to efficiently support system design that
tries to implement safety and security. The usefulness of
the approach is demonstrated by example applications to
previously reported attacks on Tesla and Cherokee.

Index Terms—Threat Analysis, Vulnerability Informa-
tion, Attack Tree

I. INTRODUCTION

Security issues are hot topics, and discussions
in the United States about CSF [1] and the like
are progressing to concretize requirements and to
consider appropriate regulations to ensure security.
As a basic countermeasure for them, considering
security by design is required. In other words, when
designing a system, it is required to estimate the
threats that may occur within the assumed product
lifetime, incorporate priorities, and include counter-
measures in the design specification.

Interference and interruption to safety because of
security threats are recognized as a big problem
in safety critical systems such as those for electric
power, automobiles, aviation, railways, and medical
care. Regarding the security of in-vehicle commu-
nication in the EVITA project [2], risk analysis, se-
curity requirement settings, architecture design, and

prototyping and demonstration of HSM by FPGA
were conducted. An Attack tree was used for risk
analysis in the EVITA project. One way to analyze
the causal relationship between safety (hazard) and
security (threat) is to express that relationship with
a combination of Fault tree (FT) and Attack tree
(AT) [3].

The MITER Corporation in the US provides
several forms of vulnerability databases. In CVE
(Common Vulnerability and Exposure) [4], individ-
ual software vulnerabilities are stored in a database.
In CWE (Common Weakness Enumeration) [5],
common vulnerabilities are cataloged focusing on
the cause of the vulnerability.

However, more than 10,000 vulnerabilities have
been reported in CVE since 2017. For many of
them we need deep insight and tremendous effort
to determine whether a new vulnerability can be
chained with the remaining vulnerabilities or normal
functions in another system and lead to a new attack.
It is not easy to create AT that comprehensively
captures those possibilities. Furthermore, in safety-
critical cyber-physical systems, the problem of mu-
tual interference between safety and security has not
been sufficiently analyzed.

This paper proposes a threat analysis method that
is effective for solving such problems.

II. PROPOSED METHOD

A. Outline of our proposed method
The scientific literature related to safety analysis

using FT is mature today [3]. On the other hand, in
security analysis, the complexity of the problem is

Result of
threat analysis

Vulnerability
case 1

Safety & security threat analysisDesigner External vulnerability

database

DBDB
Internal block

diagram

Design information

of analysis target

system

Vulnerability model
information

Vulnerability
case 2

Vulnerability
case 3

Vulnerability
information modeled
using meta info. such
as threat content and
occurrence condition

(1) Set an attack tree (AT) Goal and
overview of the attack scenario.

(2) The system refers to the vulnerability
model information and performs
semiautomatic threat analysis.

Search vulnerability
candidates that

match the analysis
target systemFT top event

Pre-
registration

Interactive
analysis

Function activity
diagram

Macro
AT

Component

database

Component
configuration

Attack case

information

Attack case or

attack report

Vulnerability case 3

Vulnerability case 1

Common
vulnerability type list

Common vulnerability
identification number list

System configuration

Fig. 1. Overview of proposed method

significantly increased. In addition, elaborate attacks
occur with multiple combinations of those vulner-
abilities. Furthermore, it is not easy to create AT
that comprehensively captures their possibilities.

In this paper, we focus on such problems and
propose a threat analysis method based on the
following characteristics as a practical approach.

(a) The defenders, that is, the designers, have
limitations on how to protect systems. That
is, under circumstances where a lot of new
vulnerabilities are announced each year, it
is practically difficult to check each time
whether a new vulnerability can be chained
with remaining vulnerabilities or normal func-
tions in the system and lead to a new attack.

(b) Attackers have a tendency to attack. Many
attacks are imitations of known attacks and
minor changes. Here we calls this a related
attack, and it is assumed that it is the sub-
stantial cause of the risk increase.

(c) Including these trends in FT – AT can be a
useful starting point for analysis.

(d) Expressing cases that occurred in the past with
FT – AT makes it possible for the designer
to recognize related attacks (recognize the
danger).

(e) Continuous application of this approach grad-
ually helps to reduce risk. It should be noted,
however, that this approach does not guaran-
tee the discovery and prevention of sophisti-

cated new attacks that are not related attacks.
The overview of the above proposed method is

shown in Fig. 1.

B. Creating vulnerability model information

The MITRE Corporation has published several
forms of vulnerability databases [4] [5]. For each
vulnerability, we will create a rough AT with ref-
erence to such databases and previous literature of
attack cases. Thus, let AT obtained in such a way
be called the first AT (hereinafter, referred to as
AT 1). One AT 1 is created for each vulnerability.
Although this work volume is large, it can be done
efficiently using natural language processing and AI
technology.

C. Proposal of component database

In some configurations of embedded systems such
as those used in automobiles and IoT devices, COTS
applications are not used as they are, and only
subprograms of the applications are embedded as
needed. On the other hand, a vulnerability database
such as CVE describes vulnerability information for
certain software, but it does not necessarily refer
to the information of subprograms in the software.
Therefore, a correspondence table between the soft-
ware version and the version of the subprograms of
the software as shown in Figure 2 would help. This
makes it easy to check vulnerability information
during the manufacturing of embedded devices.

Figure 2 shows an example of Tesla browser
hacking. As shown on the left side of Figure 2,
the CVE Detail provided by NVD contains only the
version of Chrome including vulnerable WebKit. By
referring to the correspondence table, it is possible
to predict the vulnerability of Tesla’s browser using
vulnerable WebKit.

Vulnerability

CVE-2011-3928

in
Google Chrome

before

16.0.912.77

…

Version

…

Release date

…

Layout engine

11.0.696 2011-04-27 WebKit 534.24

12.0.742 2011-06-07 WebKit 534.30

13.0.782 2011-08-02 WebKit 535.1

14.0.835 2011-09-16 WebKit 535.1

15.0.875 2011-10-25 WebKit 535.2

16.0.912 2011-12-13 WebKit 535.7

17.0.963 2012-02-08 WebKit 535.11
… … …

4

0
Tesla’s browser

Mozilla / 5.0

(X11; Linux) Apple
WebKit / 534.34

Fig. 2. Example of Component Database

D. Detailed analysis

Next, a detailed threat analysis is given based on
the design detail of the target system in addition to
the vulnerability model shown in Section II-B and
the component database shown in Section II-C.

(1) Designers create a second AT (hereinafter,
referred to as AT 2) with a top event (which
can be a troublesome accident, safety ac-
cident) of the target system (Fig. 3 (s2)).
Designers describe the outline of the attack
tree in accordance with the attack scenario
that they can think of.

(2) The algorithm compares the AT 1 and the AT 2

for each vulnerability (Fig. 3 (s3)). Natural
language processing and AI processing are
used to detect whether there is a top event of
the AT 1 that is close to the intermediate event
of the AT 2 1. If there is a close one, the AT 1

is ORed (Fig. 3 (s4)). (There is a possibility
in terms of words that its vulnerability may
cause the failure of the target system.)

(3) Paying attention to the intermediate node of
the ORed tree, the algorithm judges whether
the intermediate node should be deleted from
the AT 2 (different components’ versions or

1For example, detecting that the same word “executes arbitrary
code” appears in the uppermost node of Figure 5 and in the middle
node in the third row in Figure 6.

contradiction of attacks’ consequences) or
not. Specifically, it is assumed that the FALSE
node is a node unrelated to the component of
the AT 2, and the relation of the FALSE node
and the relation of the above node of the AND
relation, which is just above the FALSE node,
are deleted (Fig. 3 (s5)).

(4) This process is repeated for all the AT 1s for
one AT 2. Then we evaluate the occurrence
probability of the top event of the final AT 2

(Fig. 3 (s6)).

(s2) Second AT

(s4) Logically ORed
between intermediate nodes

(s1) First ATs (Plural)

(s5) Dashed nodes are irrelevant to
component of target system

(s6) Modified second FT

OR

AND

(s3) If there are
similarities

Fig. 3. Threat analysis algorithm

III. FORMULATION OF PROPOSED ALGORITHM

Next, we formulate the algorithm shown in Sec-
tion II-D.

A. Definition
The notation of the attack tree AT according to

reference [3] is shown as follows.

G = {gi} : AttackGoals (1)
O = {oi} : Operations (2)
AS = {asi} : Assertions (3)
V = {vi} : V ulnerabilities (4)
R = {ri} : Relationships (5)

An example of AT is shown in Fig. 4.
Here, an attack goal is the goal of all potential

cyber attacks, and operations represent all the basic
actions (reads, writes, etc.) that can be performed
by either the attacker or the operator of the system.
An assertion is a statement (for example, “Web
server is not patched”) representing “conditions
to be verified” in order to take account of the

actual branching of the attack tree. Vulnerability is a
known vulnerability. Relationships are relationships
that exist between elements that make up an attack
tree (that is, attack goals, operations, assertions,
vulnerabilities). The attack tree ATk is defined as
follows.

ATk = {gi,Oi,ASi,Vi,Ri} (6)

Here, gi ∈ G,Oi ⊆ O,ASi ⊆ AS,Vi ⊆ V ,Ri

is a set of relationships.
All AT has one main goal g, and the output

(upper side) of the logic gate becomes an assertion.

AT Goal

Server OS is
Linux with

Kernel 2.6

Remote DoS
vulnerability

Server exploitable

Attacker runs exploit

Attacker is
owner of a

zombie network

Server reachable from
“big size network”

Attacker runs DDoS attack

Server exploitable

Bandwidth
consumption

vulnerability

gi

oi oi

asiasi

asi

asi

asivi vi

riri

ri

Fig. 4. Example of AT (Quoted from Fig. 2 in reference [3])

B. Formulation of proposed algorithm

The first attack tree AT 1
k and the second attack

tree AT 2 are defined as follows.

AT 1
k = {gk,Ok,ASk,Vk,Rk} (7)

AT 2 = {gj,Oj,ASj,Vj,Rj} (8)

Next, look for k, which is gj = gk or asl ≈ gk,
where asl ∈ ASj . In addition, look for n and m,
which is asn ≈ asm, where asn ∈ ASk, asm ∈
ASj .

Here, x ≈ y means“Comparing the descriptions
of both sides with words, it is judged that x and y
are close.”

Next, update the second attack tree AT 2 as fol-
lows.

AT 2 = { gj,Oj ∪Ok ∪On,ASj ∪ASk ∪ASn,

Vj ∪ Vk ∪ Vn,Rj ∪Rk ∪Rn\R′} (9)

Here, X\Y represents the set of elements in X
but not in Y .

Also, R′ is R′ = R′
OR ∪ R′

AND. R′
OR is the

relationship of the FALSE node, and R′
AND is

the relationship of the upper nodes of the AND
relationship just above the FALSE node.

Here, FALSE means“The vulnerability in ques-
tion has no mechanical chain to the target event.”

A FALSE node is o ∈ Ok ∪ On, as ∈ ASk ∪
ASn, v ∈ Vk ∪ Vn that is unrelated to the com-
ponents of AT 2 (such as different components and
different versions).

C. Calculation of attack probability [3]
According to the formulation in the previous

section, it is possible to calculate the probability
of attack with the following formula using the
calculation method of the conventional research [3].

If the inputs to the logic gates are independent,
the probability of the output value from the ith AND
gate PoutANDi and the probability of the output
value from the ith OR gate PoutORi are as follows.

PoutANDi =
n∏

k=1

Pin(k, i) (10)

PoutORi =
n∑

k=1

Pin(k, i) (11)

However, Pin(k, i) is the probability of the input
of the kth input to the ith gate with n inputs (1 ≤
k ≤ n).

In addition, in reference [3], calculation formulas
when the inputs to the logic gates are not indepen-
dent are also shown.

Furthermore, reference [3] suggests rewriting the
operation node with an AND gate and an assertion
in order to obtain the probability of the top event
(attack goal) of the attack tree. As a result of
rewriting, the description of the operation disappears
from the attack tree, and the probability of the top
event can be calculated by sequentially calculating
the above expression (10) and expression (11).

IV. APPLICATION OF PROPOSED METHOD TO
ACTUAL CASE

In this section, we apply the proposed algorithm
of Section II-D to examples of Tesla [9] and Chero-
kee [10].

A. Application to Tesla case

In September 2016, Tencent used a plurality of
vulnerabilities of the Tesla Model S to invade the in-
vehicle system via WiFi, injected a malicious CAN
message into the CAN bus, and caused malfunction
of the vehicle.

1) Create the first attack tree AT 1: We create
the first AT (hereinafter, referred to as AT 1) on the
basis of the existing vulnerability database and con-
crete attack case. The more the AT 1s are created,
the more the threat analysis algorithm can predict
many attacks. As an example, Figure 5 shows a
AT 1 of the CVE-2011-3928 that is actually used
in the Tesla hack. Attacks on this vulnerability
cause“Execution of Arbitrary Code” or“Denial
of Service” in specific versions of web browsers.

CVE-2011-3928

Remote attacker executes arbitrary code or causes a Denial of Service (DoS).

Browser is exploitable:

Remote attacker executes arbitrary

code under the context of the browser.

Browser

software is

as follows:

Browser is exploitable:

Remote attacker causes

a Denial of Service (DoS).

Browser has

UAF (Use-After-Free)

vulnerability in

DOM handling.

Google

Chrome

before

16.0.912.77

APPLE-SA

2012-03-12-1

before

Safari 5.1.4

APPLE-SA-

2012-03-07-2

before

iOS 5.1

Browser

software is

as follows:

Browser has

UAF (Use-After-Free)

vulnerability in

DOM handling.

…

Same as left

Expanded by referring to

the Component DB

Apple

WebKit

before

535.7

Fig. 5. First AT of CVE-2011-3928

2) Create the second attack tree AT 2: We con-
struct the second AT (hereinafter, referred to as
AT 2) on the basis of the vulnerability database
(AT 1) and the component database. A designer sets
an attack goal and creates an outline of the attack
scenario he/she can think of. Figure 6 shows an AT 2

of the Tesla hack. The top node shows an attack
goal, and the second row shows the attack scenario
across 4 function blocks of the Tesla connected
vehicle system. The algorithm splits the outline of
the attack scenario into atomic actions and compares
AT 1 with these actions. If there are similar nodes,
AT 1 is combined with AT 2. By referring to the
Component Database, overlooking the vulnerability
CVE-2011-3928 of the Google browser that con-
tains WebKit is avoided. Finally, the node indicating

the component not used by Tesla is deleted from
AT 2.

Figure 7 shows a threat analysis result of the
attack on Tesla. For each software module allocated
in the above-described four functional blocks, the
vulnerability included in each module and the flow
of data at the time of attack execution are shown.
As a result of the cyber attack, it is understood that
the boundary between the information system dis-
playing the web information outside the vehicle and
the information system controlling the in-vehicle
equipment is broken.

B. Application to Cherokee case
Our proposed algorithm can also be applied to

the remote hacking case against Jeep Cherokee
published by C. Miller et al. in 2016. Like the Tesla
system, the Cherokee system is composed of four
functional units: cellular phone, CID, Communica-
tion Gateway, and ECU. Cherokee uses the“Ucon-
nect System”for CID. Just searching for“Uconnect
System”in the vulnerability database results in only
one hit. By referring to the component database, it
is found that D-bus is configured as interprocess
communication software of the Uconnect System.
By doing this, searching the vulnerability database
with“D-bus” reveals many vulnerabilities and led
to the discovery of the vulnerability “opened to
anonymous” exploited this time.

In addition, let’s assume that the case of Tesla is
a case that occurred before this Cherokee analysis2.
The AT 2 obtained in Section IV-A2 can then be
used as a candidate AT 1 to be used in Cherokee’s
case.

V. CONSIDERATIONS

As seen in the case of Tesla this time, the attacker
performs attacks on WiFi (V1), attacks on browsers
(V2), and attacks on console displays (V3) in order
from the outside of the defense. These V1 and V2,
V2 and V3 are high-frequency attacks that appear
in combination with the attack“to make abnormal
operation of the connected car.” Hereinafter, such
an attack is called a “co-occurrence attack.” In
addition, in the case of the Jeep Cherokee, an attack
is also carried out on the mobile phone network

2In fact, the attack on Cherokee was carried out before that of
Tesla.

Attack Tree Goal: Attacker takes remote control of Tesla Model S

- ECU receives unauthorized

ECU command.

- ECU executes the command.

- CID gets malicious web page from fake WS.

- Browser executes arbitrary code in the web page generating unauthorized ECU command.

- Browser sends unauthorized ECU command.

- Attacker sets up unauthorized WS.

- WS contains malicious web page.

- GW transfers

unauthorized ECU

command.

Electronic Control Unit

(ECU)

Communication Gateway

(GW)
Center Information Display (CID)

Web Server

(WS)

… … …

- Browser processes malicious JavasScript page and executes

arbitrary code generating unauthorized ECU command.

Browser software

is as follows:
Browser has UAF

vulnerability. (CVE-2011-3928)

…

- Browser gets privilege escalation and

sends unauthorized ECU command.

Linux OS

is as follows:
Linux has Kernel API

vulnerability. (CVE-2013-6282)

…

- CID gets malicious JavaScript

page from fake WS.

CID software is

as follows:
CID has hard-coded

SSID and password.

…

Step (s4): This subtree is ORed with the AT1 of CVE-2011-3928

Fig. 6. Second AT of Tesla (only relevant parts)

Communication Gateway
(GW)

Electronic Control
Unit (ECU)

Center Information
Display (CID)

Tesla WiFi Spot
Web Server (WS)

Display Vehicle Control Status
[Function] Input user request and send
ECU command and receive ECU response

and display vehicle control status.

[Output1] ECU command on Ethernet.

[Input1] ECU response on Ethernet.

Communication Controls
[Function] Convert ECU command
between Ethernet and CAN.

[Input1] ECU command on Ethernet.

[Output1] ECU command on CAN.

[Input2] ECU response on CAN.

[Output2] ECU response on

Ethernet.

Vehicle Controls
[Function] Receive
ECU command and

control a series

of actuators on engine

etc.

[Input] ECU command

on CAN.

[Output] ECU

response on CAN.

E
th

e
rn

e
t

C
A

N

Web Server
[Function] Receive http command
and send HTML pages.

[Input] Receive http command.

[Output] Send http response.

Display Web Pages
[Function] Input user request and send
HTTP command and receive HTML pages.

[Input2] Receive http response.

[Output2] Send http command.

V
e
h
ic

le
 C

o
n
tro

l S
y
s
te

m
W

iF
i

W
e
b
 In

fo
rm

a
tio

n
 S

y
s
te

m

[Vulnerability] CID has hard-coded

SSID and password.
[Exploit] Fake the WS.

[Vulnerability] Browser has UAF

vulnerability.

[Exploit] Fake WS responds with

malicious JavaScript pages.

Attack breaks Logical Isolation
Browser executes malicious JavaScript

and sends unauthorized ECU command.

CPU

OS

CPU

OS (Linux)

CPU

OS (RTOS)

CPU

Normal Operation
Logical isolation

is strictly maintained.

Fig. 7. Threat Analysis Result of Attack on Tesla

(V1’) and the console display (V3’), and V1’ and
V3’ are co-occurrence attacks. We consider co-
occurrence attacks such as (V1 to V2 to V3) and
(V1’ to V3’) on the basis of the Tesla and Cherokee
cases so that they can be used for unknown cases,
and we think they should be described at the higher
concept level.

In this paper, we propose an analysis method
based on the hypothesis that the same kind of
vulnerability is easily exploited in attacks against
different objects (e.g., cars). A series of attack
chains of the Cherokee case actually appear as a
chain of attacks of the Tesla case.

Furthermore, the cyber-attack chains discovered
in this way will be expressed on FT – AT , which
integrates safety and security aspects, and analysis
will continue. In the Cherokee case, defending se-
curity infringement with a safety mechanism was
reported. The mutual interference is analyzed on the

FT – AT as the security infringement depicted in
AT and as a consideration of the safety mechanism
depicted in FT . Thus, the proposed threat analysis
system executes a process of learning attacks of
similar systems from past attack cases as teacher
data on the premise that a series of attacks having
co-occurrence will occur.

VI. CONCLUSION

In general, creating abstract and appropriate
meta-information applicable to vulnerable attacks
on similar systems requires deep insight and effort
on security. However, in this method, as the created
tree of cases of Tesla and Cherokee can be used as
the first tree of future analysis, the more useful the
database is, the more useful it is to add more attack
cases for related attacks. Therefore, we believe that
this method is promising in analyzing safety and
security.

ACKNOWLEDGMENTS

This work was supported by Council for Sci-
ence, Technology and Innovation (CSTI), Cross-
ministerial Strategic Innovation Promotion Program
(SIP), “Cyber-Security for Critical Infrastructure”
(funding agency: NEDO).

REFERENCES

[1] NIST, ”Framework for Improving Critical Infrastructure Cy-
bersecurity Version 1.1,” https://www.nist.gov/cyberframework,
April 2018.

[2] A. Ruddle, et al., ”Deliverable D2.3: Security requirements for
automotive on-board networks based on dark-side scenarios,”
Seventh Research Framework Programme of the European
Community, July 2008.

[3] I. N. Fovino, et al., ”Integrating cyber attacks within fault trees,”
Reliability Engineering and System Safety 94 (2009) p.p.1394–
1402.

[4] MITRE Corporation, ”CVE - Common Vulnerability and Ex-
posure,” https://cve.mitre.org/

[5] MITRE Corporation, ”CWE List - Common Weakness Enu-
meration,” https://cwe.mitre.org/data/

[6] A. Applebaum, D. Miller, B. Strom, C. Korban and R. Wolf,
”Intelligent, automated red team emulation,” ACSAC ’16 Pro-
ceedings of the 32nd Annual Conference on Computer Security
Applications, December 05 - 08, 2016, pp 363-373.

[7] Antti Levomaki, Olli-Pekka Niemi, Christian Jalio, ”Automatic
Discovery of Evasion Vulnerabilities Using Targeted Protocol
Fuzzing,” Briefing, Black Hat Europe 2017, Dec. 2017.

[8] Geoffrey Biggs, et al, ”A profile and tool for modelling safety
information with design information in SysML,” Software &
Systems Modeling 15, 1 (Jan 2016), pp147–178.

[9] Sen Nie, et al., ”FREE-FALL: HACKING TESLA FROM
WIRELESS TO CAN BUS,” Briefing, Black Hat USA 2017,
July 2017.

[10] C. Miller and C. Valasek. ”Remote Exploitation of an Unaltered
Passenger Vehicle,” Briefing, Black Hat USA 2015, pp 1–91.

	IEEE Copyright Notice_Letter_2018
	HST2018_ID#143_Mishina_Paper_PID5558995.pdf

