IEEE Copyright Notice

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Development of Debugging Exercise Extraction
System using Learning History

Katsuyuki Umezawa
Department of Information Science
Shonan Institute of Technology
Kanagawa, Japan
umezawa@info.shonan-it.ac.jp

Masayuki Goto

Department of Industrial Management and Systems Engineering

Waseda University
Tokyo, Japan
masagoto@waseda.jp

Abstract—We have proposed an editing history visualization
system which can confirm where and how the learner modified
program. We utilized this system for actual flipped classroom
and stored a large amount of learning logs. This learning log
contains all the source code in the process of being modified
until the program is completed. We developed a debugging
exercise extraction system to automatically generate problems
for debugging practice from this learning log. The debugging
exercise extraction tool we developed extracted 18,680 source
codes (which became practice problems) that included syntactic
errors that could be used as a debugging exercise from 16 weeks
of program edit history data (total number is 31,562 files). The
execution time was 488 seconds. Since it can be analyzed only
once every six months, we believe it is a sufficiently practical
execution time.

Keywords—e-Learning, Self-Study, Artificial Teacher, Lan-
guage Leaning, Learning History

I. INTRODUCTION

We have proposed an editing history visualization system
that is a learning environment for programming language
learning [1]. This system easily prepares the learning envi-
ronment and confirms the learning situation. Also, since this
system accumulates learning logs, we can see where and how
the learners modified the program. Further, we proposed an
effective flipped classroom based on the log information of
self-study, called a “grouped flipped classroom” . In applying
this grouped flipped classroom to an actual lesson, we utilized
the editing history visualization system [2]. As a result, a large
amount of learning logs were accumulated when about 90
students took classes for 16 weeks.

I actually did a programming lesson and found that there
were several students who asked faculty members for help
without reading error messages even though they were dis-
played. The edit history visualization system accumulates all
the source code of the process that is being modified until
the program is completed. We thought that by automatically
extracting the source code containing errors from all the source

Makoto Nakazawa
Department of Industrial Information Science
Junior College of Aizu
Fukushima, Japan
nakazawa@jc.u-aizu.ac.jp

Shigeichi Hirasawa
Research Institute for Science and Engineering
Waseda University
Tokyo, Japan
hira@waseda.jp

code, we could let learners practice correcting the mistakes.
We developed a tool to realize it.

A method for automatically generating fill-in-the-blank
problem and error correction problem are known [3]. How-
ever, there is no method to automatically generate an error
correction problem based on the raw data actually coded by the
learner. Since our proposed method is based on raw data, it has
the advantage that error correction problems can be automated
based on other learners’ real mistakes. Furthermore, it has the
advantage of being applicable to any programming language.

II. DEBUGGING EXERCISE EXTRACTION SYSTEM

A. Overview of Our Proposed System

The overall configuration of the debugging exercise problem
extraction system developed this time is shown in Figure 1.
As shown in Figure 1, the existing editing history visualization
system is used until the learning history is accumulated. The
debugging exercise extraction tool refers to the learning history
accumulated by the editing history visualization system, com-
pares the correct source code with the source code containing
errors, and extracts the source code containing errors. The
source code containing errors extracted in the previous step is
referred to and distributed in a modified version of the editing
history visualization system.

Existing system

Proposed system

Editing Debug Editing History
History Exercise Visualization
Visualizatio Extraction System
n System Tool (Modified Version)

Extracted
problems

Learning
History

Fig. 1. Overall configuration of the debugging practice problem extraction
system

B. Debugging Exercise Extraction Tool

The debugging exercise extraction tool compares the learn-
ing history accumulated by the editing history visualization
system, specifically, MyClass.java existing in the complete
folder (last) for each problem, and MyClass.java in the process
of coding. It extract the number of mistakes and the number of
misspelled characters for each mistake. The tool reconstructs
the folder based on the extracted “number of mistakes” and
“number of misspelled characters”. There are two differences
between source code: one is for correcting an error and another
without error. Therefore, only source code for correcting an
error is extracted.

The developed debugging exercise extraction tool is shown
in Figure 2. As shown in Figure 2, we can specify how many
mistakes are to be extracted, how many misspelled characters
to be extracted, and which problems of lesson are to be
extracted.

% Generate Bug-Fix Exercise X
Input Foider | H¥xampp¥htdocs¥bpume20 1 7¥data¥2017 |
Output Folder [172 17]

Num of mistakes Num of misspelled characters To be extracted

(1 mistske 1 character Miesson 1 Mlesson§
12 mistakes 2or less characters Lesson 2 Lesson 10

[3 mistakes 8 or less characters Lesson 3 Lesson 11
14 or more mistakes 4 or more characters Lesson 4 Lesson 12
Max mistake [10 | Max charscters [5 | Mlesson 5 Flesson 13
Lesson 6 Lesson 14

P] Mlesson 7 [Alesson 15
[Mlesson 8 [Flesson 16

Analyze

Fig. 2. Debugging exercise extraction tool
C. Extraction Algorithm

The extraction algorithm is shown in Figure 3. This pro-
posed algorithm creates the folder structure shown in Figure
4 (b) from the folder structure shown in Figure 4 (a).

(Repeat for all lessons, all students, all problems. \

Check if last.info contains “end”.

Check whether “errors™ are described in the stdout file.
T

Make a difference between MyClass.java in each folder
and MyClass.iavaI in the last folder.

It counts the number of mistakes and how many
characters are included in one mistake.
T

The MyClass.java file is copied according to the folder

structure shewn‘ in Figure 3 (b)

C

Fig. 3. Proposed Algorithm

+0001 (Lesson#)
+0002 (Lesson #)
+q001(Problem #)
+ q002(Problem #)
+01-01-000001 }
*1

+0001 (Lesson#)
+0002 (Lesson#)

+ 17Axxx1 (Student ID)

+ 17Axxx2 (Student ID)
+q001 (Problem #)
+q002 (Problem #)

+20171006_092309

+01-01-000002
+01-01-000003

+20171006_092508 + before
- MyClass.class - MyClass.java
- MyClass.java + last
- stdin - MyClass.java
- stdout +02-01-000004

+ last (Last Log) + before
- MyClass.class - MyClass.java
- MyClass.java + last
- stdin - MyClass.java

- stdout

*1- f W P
- last.info (Status) 1: (#of mistakes)—(#of misspelled

characters)—(Sequence#)
(b) Folder structure of
Debugging exercise extraction tool

. (a)Folder structure of
Editing history visualization system

Fig. 4. Folder structure

D. Evaluation of Execution Time for Extraction

The total number of program editing history data for this
16 weeks was 31,562 files. Among them, 18,680 files were
accompanied by errors. When the debugging exercise extrac-
tion tool was executed on the computer with Intel® Core”
i5-2400 3.10GHz CPU, 16GB memory, and Windows 10 Pro
(64 bit) OS with the extraction option shown in the figure 2,
the execution time was 488 seconds. Since it is only necessary
to analyze the entire learning history of about 100 learners for
half a year, it can be said that this execution time is sufficiently
practical.

E. Visualization and Distribution of Extracted Data

The extracted data can be visualized with the modified
version of editing history visualization system as shown. Since
the editing history visualization system also has a source code
distribution function, it is possible to distribute the source
code with errors to students and ask questions about correcting
errors.

III. CONCLUSION

We developed a debugging exercise extraction system to
automatically generate problems for debugging practice from
learning log. The proposed tool extracted 18,680 source codes
(which became practice problems) that included syntactic
errors that could be used as a debugging exercise from 16
weeks of program edit history data (total number is 31,562
files). The execution time was 488 seconds. Since it can
be analyzed only once every six months, we believe it is a
sufficiently practical execution time. In the future, we will
establish an extraction method that takes logic errors and
mistakable problems into consideration. In addition, we will
verify that if students practice debugging using the problem
extracted by our system, their dependence on teachers will be
reduced.

ACKNOWLEDGMENT

Part of this work was supported by JSPS KAKENHI Grant
Number JP19HO01721, JP17K01101 and JP16K00491, and
Special Account 1010000175806 of the NTT Comprehensive
Agreement on Collaborative Research with Waseda University
Research Institute for Science and Engineering. Research
leading to this paper was partially supported by the grant as
a research working group “ICT and Education” of JASMIN.

REFERENCES

[1] M. Aramoto, M. Kobayashi, M. Nakazawa, M. Nakano, M. Goto and
S. Hirasawa, “Learning Analytics via Visualization System of Edit
Record — System configuration and implementation,” [in Japanese],
78th National Convention of Information Processing Society of Japan,
Vol. 4, 2016, p.p. 527-528.

[2] K. Umezawa, T. Ishida, M. Nakazawa and S. Hirasawa, “Application and
Evaluation of a Grouped Flipped Classroom Method,” Proceeding of the
IEEE International Conference on Teaching, Assessment and Learning
for Engineering (TALE2018), 2018, p.p. 39-45.

[3] H. Nagataki, R. Itoh, F. Ooshita, H. Kakugawa and T. Masuzawa,
“A Fault Injection Method for Generating Error-correction Exercises
in Algorithm Learning,” Journal of Information Processing Society of
Japan (IPSJ) 49(10), 2008, pp. 3366-3376.

	IEEE Copyright Notice_Letter_2019
	PID6163705.pdf

