
IEEE Copyright Notice

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

Evaluation of Applying LDA to Redacted
Documents in Security and Safety Analysis

Katsuyuki Umezawa
Dept. of Information Science
Shonan Institute of Technology

Kanagawa, Japan
umezawa@info.shonan-it.ac.jp

Sven Wohlgemuth
Intelligent Systems Laboratory

SECOM Co., Ltd.
Tokyo, Japan

s-wohlgemuth@secom.co.jp

Keisuke Hasegawa
Intelligent Systems Laboratory

SECOM Co., Ltd.
Tokyo, Japan

keisu-hasegawa@secom.co.jp

Kazuo Takaragi
Chief Executive Officer

HISAFE
Kanagawa, Japan

kazuo.takaragi.wg@gmail.com

Abstract—Cyber attacks are often executed by imitating ex-
isting attacks and combining them. Using existing vulnerability
databases, we have presented a way to semi-automatically deter-
mine the presence of vulnerabilities in the design documents of
products under development. We have calculated the similarity
between documents using the Latent Dirichlet Allocation (LDA)
technology and compared the design document of the new
product with the vulnerability database. When this comparison
processing is conducted by a third party as a service, it may
be desirable to not inadvertently disclose a part of the design
document of the new product to the third party. In this study,
we used the LDA technique to experimentally verify that the
calculated similarity value does not deteriorate even when a
portion of the design document is encrypted or obfuscated. In
conclusion, we discovered no substantial difference in similarity
with the original document; however, there are changes in numer-
ical values depending on the words to be encrypted/obfuscated.
In particular, the degradation of similarity is very small when
the version number is encrypted/obfuscated.

Index Terms—vulnerability analysis, natural language process-
ing, latent dirichlet allocation, cosine similarity

I. INTRODUCTION

As information systems are increasing in complexity, there
are more instances where cyber attacks are carried out by
exploiting numerous vulnerabilities instead of targeting a
single vulnerability alone. Furthermore, NIST SP800-53 Rev.5
[1] states “it is important to incorporate new and up-to-date
controls based on empirical attack data.” In the wake of a
rising number of cyber attacks, this has served to highlight the
value of “empirical” knowledge. We have proposed a threat
analysis method that can utilize attack cases discovered in
existing systems in actual operation [2]. In particular, our new
method evaluates the risk of complex systems by combining
a fault tree analysis, which traditionally used for reliability
analysis; attack tree analysis, which has been introduced to
analyze malicious attack patterns, and vulnerability database.

Figure 1 depicts an overview of our research. When vul-
nerable information is discovered, it is published in reports,
research papers, etc., and is stored in databases so that it can
be referenced (see (1) in Figure 1). Moreover, new attacks are
often implemented by imitating or combining existing attacks
(see (2) in Figure 1). However, when creating a new product,
developers want to be made aware of vulnerabilities in the
design document. (see (3) in Figure 1). Thus, we used LDA

Fig. 1. Overview of Our Research

technology to compare the design document to the vulnerabil-
ity database semi-automatically determine whether or not the
new design document contains existing vulnerabilities (Fig.
(4) of 1).

This study is related to the application that the above-
mentioned design document and vulnerability database match-
ing processing is conducted as a service by a third-party
organization. When a third-party organization provides a
judgment service, it can be assumed that there are words
and numbers that we do not wish to disclose in the design
documents that contain trade secrets. In other words, it has
been experimentally verified that even if some of the design
document is encrypted or obfuscated, the similarity may still
be calculated in the same manner as it would be in the original
document.

This study is based briefly on the presentation at SCIS2023
[3] and then expands on the discussion about LDA.

II. BACKGROUND

Interference with safety owing to security threats is recog-
nized as a major issue plaguing safety-oriented systems. In the
EVITA project [4], a risk analysis was conducted using attack
trees to ensure the security of in-vehicle communication. One
approach to analyzing the causal relation between safety and
security is to express the relation as a combination of a fault
tree and an attack tree [5]. Security analysts typically describe

the nodes in the attack and fault tree structures using natural
language. As a result, utilizing natural language processing
can effectively expedite security analysis.

MITRE, a US-based company, provides several forms of
vulnerability databases. Common vulnerability and exposure
(CVE) [6] is a database comprising individual software vul-
nerabilities. The common weakness enumeration (CWE) [7]
catalogs common vulnerabilities by focusing on their underly-
ing causes. Additionally, common attack pattern enumeration
and classification (CAPEC) [8] is a database that classifies
attacks according to their patterns.

CVE reports > 10, 000 vulnerabilities annually, and so-
phisticated attacks occur using multiple combinations based
on these vulnerabilities. Hence, creating an attack tree that
exhaustively covers all possible attack scenarios is difficult.
Focusing on such problems, we have proposed a threat analysis
method using a vulnerability database [9] [10]. This study
extends previous studies by investigating the threat analysis
using partially redacted documents to prevent disclosure of
sensitive information.

Researchers have reported various methods to ensure the
authenticity of sanitized electronic documents for a long time
[11] [12], and one proposed solution involves specifying who
sanitized the original document [13]. Furthermore, researchers
have proposed methods to search encrypted documents by
checking search tags [14] and accelerating the retrieval pro-
cess [15]. Conventional retrieval technologies for redacted
documents enable the retrieval of sensitive information from
encrypted or obfuscated documents by assigning retrieval IDs
and tags.

Herein, we investigate a novel technology, which can be
used to search for documents similar to confounded documents
by matching them with over 100,000 vulnerability database
documents. Particularly, we propose a method for estimating
a model using latent Dirichlet allocation (LDA) for revealing
similarities between documents using cosine similarity.

III. LDA IMPLEMENTATION

In this study, we implemented LDA using Gensim, a Python
library (Figure 2) [16].

Gensim is licensed under the LGPL and is an open-source
library for unsupervised topic modeling and natural language.
This study used the source code published in the previous re-
search [17] after adding a data reading unit and processing that
excludes particles and adverbs of documents called stopwords.
The details of the algorithm of the LDA generation process
are as follows:

(1–1) Read the description text of the base document group
as array data. For every word, use the Morphy
method of the wordnet class of nltk.corpus, which
is a Python library, to restore the word to its original
form. Furthermore, specify English in words method
of the stopwords class of nltk.corpus and remove the
stop words from the read sentences. Remove words
that appear less than an arbitrary number of times

Fig. 2. Overall processing with the proposed tool

(twice or less in this study) from the remaining text
data.

(1–2) Create a word dictionary from the documents that
have completed the above processing using the Dic-
tionary method of the corpora class.

(1–3) Each document is converted into a vector of words
from the created dictionary and document group by
the doc2bow method of dictionary class (this process
is called creating BoW corpus). If we want to per-
form weighting using tf-idf, perform the following
(1–4) and (1–5).

(1–4) Create TfidfModel by TfidfModel method in Gen-
sim’s models class.

(1–5) The TF-IDF corpus is obtained by passing the BoW
corpus created in (1–3) to the TfidfModel.

(1–6) Create an LDA model by specifying the dictionary
and corpus (BoW corpus or tf-idf corpus) created in
the LdaModel method of Gensim’s ldamodel class
and parameters.

After creating the LDA model, assign a topic distribution
to the evaluation target. The flow is as follows:

(2–1) Perform the same processing as (1–1) to read the
comparison document.

(2–2) Perform the same processing as (1–2), and set the
evaluation target as a word vector.

(2–3) A vectorized document is given as an argument to
the get document topics method of the LdaModel
class, and a probability distribution is assigned.

At the end of the process in Figure 2, the similarity is
calculated.

(3–1) The similarity of the topic distribution vectors x⃗, y⃗
of each document obtained by the flow from the base
document and the flow from the evaluation target is
the cosine similarity cos(x⃗, y⃗) = x⃗·y⃗

|x⃗||y⃗| .
(3–2) Finally, the documents whose similarity exceeds the

preset threshold value are extracted.

IV. EXPERIMENTAL METHOD

A. Documents to be inspected

The two design documents to be examined were the sec-
tion on LOCAL PRIVILEGE ESCALATION (referred to as
DD1) and the section on BROWSER HACKING (referred to
as DD2) in document [18]. Portions of each document are
depicted in Figures 3 and 4.

LOCAL PRIVILEGE ESCALATION� �
Though we got a remote shell based on our browser hacking,
it’s also impossible to get arbitrary permission because of

AppArmor . We need another vulnerability to escape from

AppArmor and get a higher privilege than browser’s process

context . It seems that the Linux kernel version of CID is
very old, there is nearly no exploiting mitigations on Linux
kernel 2.6.36 .� �

Fig. 3. Part of DD1

BROWSER HACKING� �
Since the User Agent of Tesla web browser is ”Mozilla/ 5.0
(X11; Linux) AppleWebKit/ 534.34 (KHTML, like Gecko)
QtCarBrowser Safari/ 534.34 ”, it can be deduced that the
version of QtWebkit is around 2.2.x . In such old version,
there are many vulnerabilities in QtWebkit. Our exploit utilizes
two vulnerabilities to achieve arbitrary code execution. The
first vulnerability exists in function JSArray::sort(). This

function will be called when the method function sort()
of an array be called in JavaScript code. The function
JASrray::sort() mainly do three things:� �

Fig. 4. Part of DD2

Here, the words in dark gray are removed because they
are proper nouns. Light gray words are obfuscated because
they appear frequently. Furthermore, the numbers enclosed in
frames are to be obfuscated.

B. About obfuscation

This section describes the obfuscation conducted in this
experiment. The purpose of this experiment is to confirm
the LDA matching precision for the obfuscated or encrypted
documents. Thus, the security strength related to this ob-
fuscation is outside the scope of this paper. Regarding the

security strength, we believe that any encryption or obfuscation
processing should be used.

Lists of obfuscated words for DD1 and DD2 are depicted
in Tables I and II.

TABLE I
OBFUSCATED WORDS FROM DD1

Target word Occurrences Random number r

kernel 4 1
privilege 3 4
arbitrary 2 6
context 2 10
exploit 2 4
vulnerability 2 9

TABLE II
OBFUSCATED WORDS FROM DD2

Target word Occurrences Random number r

structure 20 15
function 12 5
address 9 12
element 8 4
storage 8 1
pointer 6 8
type 6 10
array 5 12
memory 5 16
tag 5 8
vulnerability 5 7

TABLE III
OBFUSCATED VERSION NUMBER FROM DD1

Target version number Occurrences Random number r

(Linux kernel) 2.6.36 1 3

TABLE IV
OBFUSCATED VERSION NUMBER FROM DD2

Target version number Occurrences Random number r

(Mozilla) 5.0 1 4
(AppleWebKit) 534.34 1 12
(Safari) 534.34 1 16
(QtWebkit) 2.2.x 1 2

Here we take “vulnerability” in Table I as an example.
The random number is r = 9. A table obtained by randomly
rearranging the publicly available word table [19] (which shall
also be made public) is called a random word list. Suppose
that “vulnerability” appears in the kth random word list. At
that time, the target word is replaced with 16 words that are

k − (r − 1) ≤ l ≤ k + (16 − r). Specifically, “vulnerabil-
ity” is replaced by the following 16 words: “achievement,
ninny, atrocity, drawback, feet, partial, mutuality, optimizes,
vulnerability, vest, bosoms, sumptuously, goethe, asylums,
algebraically, unpredictable.” In addition, refer to the list of
version numbers for each product and change the version num-
bers to the 16 numbers before and after the intended version
number. A list of obfuscated words and version numbers are
illustrated in Tables IX and X.

C. About LDA parameters

Several parameters need to be calculated for model gen-
eration in LDA. First, for the corpus, the Bag of Words
(BoW) corpus (Step (1-3) in Figure 2) and the term frequency
- inverse document frequency (tf-idf) corpus (Step (1-4)(1-
5)) can be selected. We have selected the if-idf corpus.
Furthermore, we have truncated words with a frequency of
two or less in the document. Also, it is important to determine
the number of topics. Proposals have been made to automate
the process of counting topics and to count topics using
the metrics of coherence and perplexity, which measure the
quality of subjects and predictability respectively. [20] [21].
Nevertheless, as a preliminary experiment, we changed the
number of topics from 1 to 20 and adopted the number of
topics with the highest accuracy. The number of topics was
13 in the analysis of DD1, and 11 in the analysis of DD2.

D. Experimental results (cosine similarity)

We employed the LDA method to match obfuscated DD1
(145 words) and DD2 (728 words) with CVE [6] (119,479
documents) to determine the cosine similarity. For comparison,
we also estimated the similarity with the CVE for the original
DD1 and DD2 before obfuscation. Tables V and VII show
the results of obfuscating words. Tables VI and VIII reveal
the obfuscated version numbers. The number of filtered items
is the number of CVEs with a higher similarity than the
CVE targeted by each design document (CVE-2013-6282 in
DD1, CVE-2011-3928 in DD2). In other words, the number of
filtered items represents how many of the 119,479 documents
were narrowed down by the LDA technology. The specifica-
tions of the PC utilized in the experiment are OS: Windows
10, CPU: Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz,
Memory: 24GB.

V. CONSIDERATION

As illustrated in Tables V and VII, if 6 or 11 words are
obfuscated, the degree of similarity does not vary substantially,
but the accuracy of filtering becomes worse. However, when
each word is obfuscated individually, there is not a noticeable
difference in the number of filtered items.

Tables VI and VIII confirm that filtering accuracy does not
deteriorate even when multiple version numbers are obfuscated
at the same time. Furthermore, the execution time is around
25 seconds, which is a practical amount of time.

From Tables V and VIII, some obfuscated documents have
less filtering (better accuracy) than the original documents.

Here, we concentrate on the number of filtering in Table VI
and examine it in more detail. Figure 5 reveals the breakdown
of the number of filtering.

Fig. 5. Breakdown of number of filtered items

We hypothesized that if the version numbers were included
in the CVEs, they would have an impact on filtering accuracy.
However, from Figure 5, the percentage of CVEs containing
version numbers among the filtered CVEs did not change
much. It is unclear why the number of narrowed-down cases
was reduced from 88 to 51. It has been observed that the
number filtered varies greatly depending on the words being
obfuscated. The fact that the number to be filtered has de-
creased this time (performance has increased as a result of
obfuscation) appears to be within the margin of error.

VI. CONCLUSION AND FUTURE WORK

In this study, we proposed a case where threat analysis
using LDA is conducted by a third party. To prevent the
disclosure of specifications containing trade secrets before
development to third parties, we experimentally demonstrated
that even if we employ obfuscated specifications, there is no
significant difference in the similarity of matching results with
the existing vulnerability case database (CVE).

In future studies, we plan to continue to conduct verification
using real design documents (specifications), automatically
determine the number of topics in LDA analysis, employ
techniques other than LDA, use vulnerability databases other
than CVE, and apply them to further cases.

REFERENCES

[1] SP 800-53 Rev.5, “Security and Privacy Controls for
Information Systems and Organizations” Sep. 2020.
https://doi.org/10.6028/NIST.SP.800-53r5

[2] K. Umezawa, H. Koyanagi, S. Wohlgemuth, Y. Mishina, and K.
Takaragi, “Safety and Security Analysis using LDA based on Case
Reports: Case Study and Trust Evaluation Method,” Proceedings of the
17th International Conference on Availability, Reliability and Security
(ARES 2022), Article No.: 154, pp. 1-7, Aug. 2022.

[3] K. Takaragi, T. Kubota, S. Wohlgemuth, K. Umezawa, K. Hasegawa,
and Y. Mishina, “Privacy–enhanced AI natural language processing for
KYC –Applying LDA to redacted documents with range proofs by
DAC/ZKRP–, ” Proceedings of the Symposium on Cryptography and
Information Security (SCIS 2023), Jan, 2023..

TABLE V
SIMILARITY BETWEEN CVE AND DD1 WITH OBFUSCATED WORDS

CVE original obfuscated obfuscated obfuscated obfuscated obfuscated obfuscated obfuscated
DD1 kernel privilege arbitrary context exploit vulnerability all 6 words

CVE-1999-0001 0.9680 0.9497 0.9677 0.9556 0.9697 0.9716 0.9481 0.9415
CVE-1999-0002 0.8291 0.9096 0.7982 0.8252 0.8300 0.8325 0.8182 0.9104
CVE-1999-0003 0.8557 0.9335 0.8426 0.8241 0.8565 0.8781 0.8023 0.9011

Omitted (originally, there are 119479 lines in total)
CVE-2019-9976 0.9725 0.9628 0.9734 0.9571 0.9742 0.9805 0.9459 0.9535
CVE-2019-9977 0.9362 0.9447 0.9372 0.9131 0.9378 0.9503 0.8973 0.9262
CVE-2019-9978 0.9466 0.9333 0.9464 0.9342 0.9486 0.9517 0.9254 0.9395

Diff. from the original (max) — 0.1800 0.0482 0.0603 0.0248 0.0472 0.0988 0.1701
Diff. from the original (ave.) — 0.0260 -0.0021 -0.0242 0.0009 0.0158 -0.0408 0.0105
Execution time (s) 24.710 25.074 26.154 24.861 24.557 24.590 24.946 24.449
Number of filtered items 143 12782 66 692 73 155 2922 6894

TABLE VI
SIMILARITY BETWEEN CVE AND DD1 WITH OBFUSCATED VERSION

NUMBERS

CVE original obfuscated
DD1 Linux kernel 2.6.36

CVE-1999-0001 0.9680 0.9690
CVE-1999-0002 0.8291 0.8003
CVE-1999-0003 0.8557 0.8539

Omitted (originally, there are 119479 lines in total)
CVE-2019-9976 0.9725 0.9771
CVE-2019-9977 0.9362 0.9443
CVE-2019-9978 0.9466 0.9545

Diff. from the original (max) — 0.0551
Diff. from the original (ave.) — 0.0090
Execution time (s) 24.710 24.360
Number of filtered items 143 106

[4] A. Ruddle et al., “Deliverable D2.3: Security requirements for automo-
tive on-board networks based on dark-side scenarios,” Seventh Research
Framework Programme of the European Community, July 2008.

[5] I. N. Fovino et al., “Integrating cyber attacks within fault trees,”
Reliability Engineering and System Safety 94 (2009) p.p.1394–1402.

[6] MITRE Corporation, “CVE-Common Vulnerability and Exposure,”
https://cve.mitre.org/, (Last accessed April 11, 2023).

[7] MITRE Corporation, “CWE List - Common Weakness Enumeration,”
https://cwe.mitre.org/data/, (Last accessed April 11, 2023).

[8] MITRE Corporation, “CAPEC - Common Attack Pattern Enumeration
and Classification,” https://capec.mitre.org/, (Last accessed April 11,
2023).

[9] K. Umezawa, Y. Mishina, K. Taguchi and K. Takaragi, “A Prop osal of
Threat Analyses using Vulnerability Databases,” 2018 Symposium on
Cryptography and Information Security (SCIS)，1C2-6, Jan. 2018.

[10] Y. Mishina, K. Takaragi and K. Umezawa “A Proposal of Threat
Analyses for Cyber-Physical System using Vulnerability Databases,”
2018 IEEE International Symposium on Technologies for Homeland
Security (IEEE HST), 2018.

[11] K. Miyazaki, S. Susaki, M. Iwamura, T. Matsumoto, R. Sasaki and H.
Yoshiura, “Digital Document Sanitizing Problem,” Information Process-
ing Society of Japan (IPSJ) Computer Security Group (CSEC) technical
reports, pp. 61-67, 2003.

[12] Y. Hatano, K. Miyazaki and S. Tezuka, “An Information Disclosure
System of Digital Documents with Protecting Personal Information,”

Journal of Information Processing Society of Japan (IPSJ), Vol. 47，
No.3，pp. 667–675，2006.

[13] T. Izu, N. Kanaya, M. Takenaka and T. Yoshioka, “A Sanitizable
Signature Scheme with Sanitizer Identification,” Journal of Information
Processing Society of Japan (IPSJ), Vol.48，No.9，pp. 2990–2998，
2007.

[14] D. Boneh and B. Waters, “Conjunctive, Subset, and Range Queries on
Encrypted Data.” In: Vadhan, S.P. (eds) Theory of Cryptography. TCC
2007. Lecture Notes in Computer Science, vol 4392. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-540-70936-7 29

[15] N. Matsuda, T. Ito, Hi. Shibata, M. Hattori and T. Hirano, “Efficient
Searchable Encription and Its Application to Web Services,” Proceedings
of the Multimedia, Distributed, Cooperative, and Mobile Symposium
(DICOMO), pp. 2067–2074，2013.

[16] H. Koyanagi, Y. Mishina, K. Takaragi, S. Wohlgemuth, and K.
Umezawa, “Research on attack cases via topic-model analysis and selec-
tion of vulnerability candidates from large-scale vulnerability database,”
International Workshop on Security (IWSEC) Poster Session, Fukui,
Japan, Sep. 2020.

[17] Spooky Maskman, “Topic analysis by LDA with Gensim,”
https://qiita.com/Spooky Maskman/items/
0d03ea499b88abf56819. (Last accessed Feb. 28, 2023).

[18] S. Nie, L. Liu, and Y. Du, “FREE-FALL: HACKING TESLA FROM
WIRELESS TO CAN BUS,” Briefing, Black Hat USA 2017, July 2017.

[19] http://www.mieliestronk.com/corncob lowercase.txt (Last accessed Feb.
28, 2023).

[20] J. Chang, S. Gerrish, C. Wang, J. L. Boyd-Graber, and D. M Blei,
“Reading tea leaves: How humans interpret topicmodels,” Advances in
NIPS, p.p. 288–296, 2009.

[21] D. Newman, J. H. Lau, K. Grieser, and T. Baldwin, “Automatic
Evaluation of Topic Coherence,” p.p. 100–108, 2010.

TABLE VII
SIMILARITY BETWEEN CVE AND DD2 WITH OBFUSCATED WORDS

CVE original obfuscated obfuscated obfuscated obfuscated obfuscated obfuscated
DD2 structure function address element storage pointer

CVE-1999-0001 0.9343 0.9342 0.9344 0.9159 0.9448 0.9397 0.9430
CVE-1999-0002 0.9427 0.9426 0.9431 0.9222 0.9548 0.9482 0.9528
CVE-1999-0003 0.9654 0.9654 0.9657 0.9602 0.9662 0.9706 0.9722

Omitted (originally, there are 119479 lines in total)
CVE-2019-9976 0.8019 0.8020 0.8010 0.7982 0.8016 0.8065 0.8015
CVE-2019-9977 0.8990 0.8990 0.8988 0.8838 0.9073 0.9043 0.9057
CVE-2019-9978 0.9695 0.9695 0.9696 0.9732 0.9626 0.9751 0.9748

Diff. from the original (max) — 0.0001 0.0016 0.0656 0.0530 0.0324 0.0309
Diff. from the original (ave.) — 0.0000 -0.0003 0.0009 -0.0036 0.0040 0.0007
Execution time (s) 26.104 26.191 26.147 25.844 26.211 25.618 25.968
Number of filtered items 1775 1768 1778 422 8086 1191 1724

CVE original obfuscated obfuscated obfuscated obfuscated obfuscated obfuscated
DD2 type array memory tag vulnerability all 11 words

CVE-1999-0001 0.9343 0.9498 0.9379 0.9343 0.9467 0.9406 0.9744
CVE-1999-0002 0.9427 0.9502 0.9463 0.9427 0.9489 0.9500 0.9705
CVE-1999-0003 0.9654 0.9732 0.9689 0.9654 0.9718 0.9691 0.9889

Omitted (originally, there are 119479 lines in total)
CVE-2019-9976 0.8019 0.8124 0.8049 0.8019 0.8105 0.7976 0.8169
CVE-2019-9977 0.8990 0.9187 0.9025 0.8990 0.9146 0.9032 0.9431
CVE-2019-9978 0.9695 0.9729 0.9732 0.9695 0.9724 0.9703 0.9820

Diff. from the original (max) — 0.0449 0.0199 0.0000 0.0352 0.0208 0.1308
Diff. from the original (ave.) — -0.0025 0.0027 0.0000 -0.0017 -0.0030 -0.0068
Execution time (s) 26.104 25.854 25.883 25.500 25.680 25.843 26.188
Number of filtered items 1775 3298 1389 1775 2789 2703 9781

TABLE VIII
SIMILARITY BETWEEN CVE AND DD2 WITH OBFUSCATED VERSION NUMBERS

original obfuscated obfuscated obfuscated obfuscated obfuscated
CVE DD2 Moziila AppleWebKit QtCarBrowser QtWebkit all 4 numbers

5.0 534.34 Safari 534.34 2.2.x

CVE-1999-0001 0.9343 0.9319 0.9343 0.9343 0.9334 0.9310
CVE-1999-0002 0.9427 0.9373 0.9427 0.9427 0.9416 0.9362
CVE-1999-0003 0.9654 0.9635 0.9654 0.9654 0.9649 0.9629

Omitted (originally, there are 119479 lines in total)
CVE-2019-9976 0.8019 0.8113 0.8019 0.8019 0.8026 0.8120
CVE-2019-9977 0.8990 0.9002 0.8990 0.8990 0.8986 0.8997
CVE-2019-9978 0.9695 0.9678 0.9695 0.9695 0.9693 0.9675

Diff. from the original (max) — 0.0317 0.0000 0.0000 0.0025 0.0332
Diff. from the original (ave.) — 0.0051 -0.0000 -0.0000 0.0003 0.0054
Execution time (s) 26.104 26.529 26.066 26.297 26.002 26.458
Number of filtered items 1775 1884 1775 1775 1662 1834

TABLE IX
OBFUSCATED WORDS AND VERSION NUMBERS FROM DD1

Target Occurrences Random number r Replacement
kernel 4 1 kernel, laity, amnesiac, wast, expiration, posters, phooey, elderly, outpourings, sun-

screens, cross, ripening, totting, unfreezing, trunking, overhears
privilege 3 4 recommencement, scorched, axons, privilege, opportune, unannounced, fairness, axil-

lary, checkup, overstepping, upcast, cohered, paraffin, televisual, cuneiform, corkscrew
arbitrary 2 6 perspectives, drover, execute, fingerprinted, deviating, arbitrary, populate, lathered,

hoofs, humiliate, honorary, merrymaking, congruences, dan, owns, sphincters
context 2 10 example, textually, bivalves, canvas, zeppelin, replant, thunderbolt, bemusedly, explo-

sions, context, discounted, boudoirs, conflictingly, disinclination, seasonally, conve-
nience

exploit 2 4 treasurer, bolstering, truthfully, exploit, meeting, lightning, grooving, battlegrounds,
discriminated, condemnable, amalgamates, genomic, auditions, communique, uni-
formly, retrench

vulnerability 2 9 accomplishment, ninny, atrocity, drawback, feet, partial, mutuality, optimizes, vulner-
ability, vest, bosoms, sumptuously, goethe, asylums, algebraically, unpredictable

(Linux kernel) 2.6.36 1 3 2.6.34, 2.6.35, 2.6.36, 2.6.37, 2.6.38, 2.6.39, 2.6.9, 3.0, 3.1, 3.10, 3.11, 3.12, 3.13,
3.14, 3.15, 3.16

TABLE X
OBFUSCATED WORDS AND VERSION NUMBERS FROM DD2

Target Occurrences Random number r Replacement
structure 20 15 hatless, redeployed, gushing, languishing, hacks, cheaply, handyman, gab, withstand,

dynamics, crayons, loaned, catastrophic, common, structure, classicist
function 12 5 untangle, intimidated, selectivity, communally, function, mishandles, fiesta, hyperbole,

downsized, birthdays, undisturbed, practically, macaw, basketry, grappling, halfheart-
edly

address 9 12 quotidian, borehole, dot, bobtail, limped, fez, compensates, growls, replanting, redis-
played, ruled, address, shifter, rightward, unattainably, hinges

element 8 4 loves, choker, philosophizing, element, horrifically, groper, evaporates, pioneer, road-
blocks, harridan, swooned, witchdoctors, grimaced, affliction, tablespoonfuls, thorium

storage 8 1 storage, pup, undulated, cuddly, headnote, pose, recursive, espresso, frank, barkers,
harshly, democratic, malfunctioning, freshener, colonise, numerology

pointer 6 8 fatally, predisposes, illustrators, sows, trained, tailpiece, bankrupted, pointer, peck,
cooperative, lunchtimes, macroscopic, spectators, consist, lower, transducers

type 6 10 treasuries, tights, toothmarks, charters, jesuit, entity, lofts, videoconferencing, intensi-
ties, type, enhances, trendiness, relativistic, dreadlocks, stratifies, defibrillator

array 5 12 rumblings, ichneumon, revenging, calorimeter, crests, sepulchres, lodges, blockage,
pains, undid, ibis, array, layering, dormitory, slurped, therms

memory 5 16 cobs, bejewelled, pelting, featuring, egomaniac, saris, collectivity, brasses, fauns,
reorganisations, teeming, tenths, spline, snorer, weep, memory

tag 5 8 protactinium, dart, answerer, safeness, snowier, betters, hosier, tag, annulment, others,
groupings, estuary, bricklayer, lithography, funerary, divide

vulnerability 5 7 aatrocity, drawback, feet, partial, mutuality, optimizes, vulnerability, vest, bosoms,
sumptuously, goethe, asylums, algebraically, unpredictable, mackintosh, impalas

(Mozilla) 5.0 1 4 4.0.1, Aurora 5.0a2, 5.0 Beta 2, 5.0, 5.0.1, Nightly 6.0a1, Aurora 6.0a2, 6.0 Beta 1,
6.0, 6.0.1, 6.0.2, Nightly 7.0a1, Aurora 7.0a2, 7.0 Beta 1, 7.0, 7.0.1

(AppleWebKit) 534.34 1 12 533.17.9, 533.18.1, 533.19.4, 533.2+, 533.20.25, 533.21.1, 533.4+, 533+, 534.1+,
534.15+, 534.16+, 534.34, 534.55.3, 534.57.2, 537.13+, 537.75.14

(Safari) 534.34 1 16 532.0+, 532.3+, 532+, 533.17.8, 533.17.9, 533.18.1, 533.19.4, 533.2+, 533.20.25,
533.21.1, 533.4+, 533+, 534.1+, 534.15+, 534.16+, 534.34

(QtWebkit) 2.2.x 1 2 2.1.1, 2.2, 2.3, 2.3.4, 2.3.4.dfsg, 2.3.4.dfsg.1, 3.0, 4.8.6, 5.0, 5.1.1, 5.2.1, 5.212.0,
5.212.0.1+dde, 5.212.0.2 alpha4+dde, 5.212.0 alpha2, 5.212.0 alpha3

